Kontakt

IRIS Adlershof
Humboldt-Universität zu Berlin
Zum Großen Windkanal 2
12489 Berlin
Germany

Direktor
Prof. Dr. Jürgen P. Rabe
rabeiris-adlershof.de


Geschäftsstelle
officeiris-adlershof.de
Tel.: +49 30 2093-66350
Fax: +49 30 2093-2021-66350

 

SCIENTIFIC HIGHLIGHTS

Drucken eines elektronischen Regenbogens -
Kombination aus Farbdruck und chemischem Tuning ermöglicht gedruckte Spektrometer

Forscher des Innovation Lab HySPRINT am Helmholtz-Zentrum Berlin (HZB) und der Humboldt-Universität zu Berlin (HU) haben mit einem Tintenstrahldruckverfahren eine Reihe von Photodetektoren auf Basis eines hybriden Perowskit-Halbleiters hergestellt. Durch das Mischen von nur drei Tinten konnten die Forscher die Eigenschaften des Halbleiters während des Druckvorgangs präzise einstellen. Der Tintenstrahldruck ist in der Industrie bereits eine etablierte Herstellungsmethode, die eine schnelle und kostengünstige Verarbeitung von Lösungen ermöglicht. Die Erweiterung der Inkjet-Fähigkeiten von der großflächigen Beschichtung hin zur kombinatorischen Materialsynthese eröffnet neue Möglichkeiten für die Herstellung verschiedenartiger elektronischer Komponenten in einem einzigen Druckschritt

 

a) Der kombinatorische Druck ermöglicht eine präzise Steuerung der Mischung von Perowskit-Precursor-Tinten während der Filmherstellung - wie in einem gewöhnlichen Tintenstrahldrucker.
b) Dies führt zu einem Gradienten der Zusammensetzung des Halogenids in Metallhalogenid-Perowskiten auf Methylammonium-Basis.
c) Jede Perowskit-Zusammensetzung wird mittels Tintenstrahl auf vorgefertigte ineinandergreifende ITO-Elektroden gedruckt, um eine Reihe von neun Photodetektoren herzustellen.
d) Bei Messung der externen Quanteneffizienz steht die Detektionskante der Photodetektoren in direktem Zusammenhang mit dem Zusammensetzungsgradienten des Metallhalogenid-Perowskits.

Wundermaterial Metallhalogenid-Perowskite
Metallhalogenid-Perowskite faszinieren Forscher in Wissenschaft und Industrie durch die große Bandbreite möglicher Anwendungen. Die Herstellung elektronischer Bauteile mit diesem Material ist besonders reizvoll, weil sie aus einer Lösung, d.h. aus einer Tinte heraus möglich ist. Kommerziell erhältliche Salze werden in einem Lösungsmittel gelöst und dann auf ein Substrat aufgebracht. Die Gruppe um Prof. Emil List-Kratochvil, Leiter einer gemeinsamen Forschungsgruppe am HZB und der HU, konzentriert sich darauf, solche Bauelemente mit Hilfe fortschrittlicher Herstellungsverfahren wie dem Tintenstrahldruck herzustellen. Der Drucker trägt die Tinte auf ein Substrat auf und nach dem Trocknen bildet sich ein dünner Halbleiterfilm. Durch die Kombination mehrerer Schritte mit verschiedenen Materialien lassen sich Solarzellen, LEDs oder Fotodetektoren in wenigen Minuten herstellen.
Der Tintenstrahldruck ist in der Industrie bereits eine etablierte Technik, nicht nur für Zeitungen und Zeitschriften, sondern auch für Funktionsmaterialien. Metallhalogenid-Perowskite sind für den Tintenstrahldruck besonders interessant, da ihre Eigenschaften durch ihre chemische Zusammensetzung eingestellt werden können. Forscher am HZB haben bereits Solarzellen und LEDs aus Perowskiten im Inkjetdruck hergestellt. Die Inkjet-Fähigkeiten wurden 2020 weiter ausgebaut, als die Gruppe von Dr. Eva Unger erstmals einen kombinatorischen Ansatz für den Inkjet-Druck nutzte, um verschiedene Perowskit-Zusammensetzungen auf der Suche nach einem besseren Solarzellenmaterial zu drucken.

Kombinatorischer Druckansatz für die industrielle Produktion von elektronischen Bauelementen
In der aktuellen Arbeit fand das Team um Prof. Emil List-Kratochvil eine spannende Anwendung: eine Reihe gedruckter Perowskite als wellenlängenselektive Photodetektoren. "Kombinatorischer Tintenstrahldruck kann nicht nur zum Untersuchen verschiedener Materialzusammensetzungen für Solarzellenmaterialien verwendet werden," erklärt er, "sondern ermöglicht uns auch die Herstellung mehrerer, separater Bauelemente in einem einzigen Druckschritt." Im Hinblick auf ein industrielles Verfahren würde dies die Produktion mehrerer elektronischer Bauelemente in großem Maßstab ermöglichen. In Kombination mit gedruckten elektronischen Schaltkreisen würden die Photodetektoren ein einfaches Spektrometer bilden: papierdünn, auf eine beliebige Oberfläche gedruckt, potenziell flexibel, ohne die Notwendigkeit eines Prismas oder Gitters zur Trennung der eingehenden Wellenlängen.

Emil List-Kratochvil ist Professor für Hybride Bauelemente an der Humboldt-Universität zu Berlin, Mitglied von IRIS Adlershof und Leiter eines 2018 gegründeten Joint Labs, das die HU gemeinsam mit dem HZB betreibt. Darüber hinaus arbeitet ein Team um List-Kratochvil gemeinsam mit der HZB-Wissenschaftlerin Dr. Eva Unger, seit einigen Tage ebenso ein IRIS Adlershof-Mitglied, im Helmholtz-Innovationslabor HySPRINT am HZB an der Entwicklung von Beschichtungs- und Druckverfahren für hybride Perowskite.

Using Combinatorial Inkjet Printing for Synthesis and Deposition of Metal Halide Perovskites in Wavelength‐Selective Photodetectors
V.R.F. Schröder, F. Hermerschmidt, S. Helper, C. Rehermann, G. Ligorio, H. Näsström, E.L. Unger, and E.J.W. List-Kratochvil
Adv. Eng. Mater. (2021) 2101111 OPENACCESS
DOI: 10.1002/adem.202101111

 
Zündende Elektrolumineszenz in Poly(triazinimid)-Filmen

Ein Team von Forschenden des King's College London, der Humboldt-Universität zu Berlin, der Carl von Ossietzky Universität Oldenburg und des Helmholtz-Zentrums Berlin (HZB) hat die Synthese, Struktur und optischen Eigenschaften von Poly(triazinimid), einem Mitglied der Familie der graphitischen Kohlenstoffnitride, untersucht. Ihre Fortschritte bei der Materialqualität und Verarbeitung ermöglichten den Bau der ersten einschichtigen, organischen Leuchtdiode (OLED) mit einem in Lösung verarbeiteten graphitischen organischen Material als metallfreie Emissionsschicht.
Organische Halbleiter haben in den letzten Jahrzehnten in akademischen und industriellen Kreisen großes Interesse geweckt. Grund dafür sind ihre vorteilhaften Eigenschaften wie (i) ein hoher Absorptionskoeffizient im Vergleich zu herkömmlich verwendetem Silizium sowie (ii) eine weniger energieintensive Herstellung und (iii) die Zusammensetzung aus Elementen, die auf der Erde reichlich vorhanden sind. Die Fortschritte auf diesem Forschungsgebiet versprechen neue, kosten- und energieeffiziente Technologien für die Unterhaltungselektronik, intelligente Verpackungen und flexible Lichtquellen.
Bisher erforschte organische Halbleiter leiden häufig unter Degradationsprozessen und Defekten, insbesondere wenn sie elektrochemisch verändert ("dotiert") werden, aufgrund von Dotierstoffdrift und -migration oder aufgrund von Oxidation, wenn sie atmosphärischen Bedingungen ausgesetzt sind. Die einzigartigen Eigenschaften von Poly(triazinimid) ermöglichen es der Forschung, die Probleme anzugehen, die herkömmliche organische Halbleiter plagen. Poly(triazinimid) ist sehr stabil gegenüber Hitze und Luft. Darüber hinaus ermöglicht die graphitische Morphologie von Poly(triazinimid) die Exfoliierung des Materials in dünne, in Lösung verarbeitbare Schichten und verringert gleichzeitig die Migration und Drift von chemisch gebundenen Dotierstoffen.
"Mit der verbesserten Materialqualität sind wir nun in der Lage, tiefer in die empfindlicheren Merkmale dieses Materials einzutauchen, wie etwa dessen elektronische Struktur und Schwingungsmodi. Dies wird unser Verständnis dieses Materials sowie verwandter Materialien erheblich verbessern und uns dabei helfen, die OLED-Leistung zu verbessern und über zukünftige, hochwertige Anwendungen von Poly(triazinimid) nachzudenken", sagt David Burmeister, Doktorand bei IRIS-Mitglied Michael J. Bojdys.
 

Optimized synthesis of solution-processable crystalline poly(triazine imide) with minimized defects for OLED application
D. Burmeister, H.A. Tran, J. Müller, M. Guerrini, C. Cocchi, J. Plaickner, Z. Kochovski, E. List-Kratochvil, M. Bojdys
Angew. Chem. Int. Ed. 2021.
DOI: 10.1002/anie.202111749


 
Shaping 2D materials with small molecules

Electronic properties of 2D materials such as graphene and transition metal chalcogenides can be tailored by shaping their topography at the nanoscale. At IRIS Adlershof, Abdul Rauf and colleagues from the RabeLab together with Igor Sokolov investigated how to shape surfaces and interfaces of 2D materials with small molecules, intercalating at the interfaces between the 2D materials and a solid substrate. Particularly, they investigated wetting of interfaces between graphene and a hydrophilic substrate, mica, with two small molecules, water and ethanol. Wetting with water leads to labyrinthine structures exhibiting branch widths down to the 10 nm scale. This is explained by a process leading to an equilibrium between electrostatic repulsion of the polar molecules preferentially oriented at the interface, and the line tension between wetted and non-wetted areas. Increasing line tension or decreasing dipole density increases the branch width, causing eventually non-structured wetting layers. The method might be used to shape 2D materials to tailor their electronic properties.

 
Rod of Light
Scanning force microscopy images of graphene surfaces shaped by an intercalating molecularly thin water layer self-assembled into labyrinthine patterns (top left), and the compact wetting front of an ethanol layer (top right). The snapshots of Molecular Dynamics simulations of the interfaces filled with molecules (bottom) helped to understand the origin of the forces driving the pattern formation. 

Shaping surfaces and interfaces of 2D materials on mica with intercalating water and ethanol
A. Rauf, J. D. Cojal González, A. Balkan, N. Severin, I. M. Sokolov, and J. P. Rabe
Molecular Physics, 119:15-16, OPENOPEN ACCESSACCESS
DOI: 10.1080/00268976.2021.1947534

 

Fischen mit Licht

In der Regel werden Moleküle durch Versuch und Irrtum für eine Aufgabe optimiert. Zeitaufwändige iterative Schleifen aus Synthese und Charakterisierung ermöglichen detaillierte Einblicke in die zugrundeliegenden Struktur-Eigenschafts-Beziehungen. Um diesen Prozess zu beschleunigen, haben Niklas König und Dragos Mutruc aus der AG Hecht eine äquilibrierende Mischung aus photoschaltbaren Molekülen erzeugt und deren wellenlängenspezifische Reaktion zur Auswahl verwendet. So konnten sie den gewünschten Schalter aus einem Pool aus vielen verschiedenen Schaltern mit Hilfe von Licht „fischen“. Ihre Methode sollte die schnelle Erkundung der strukturellen Vielfalt funktioneller Farbstoffe erleichtern.
 
Rod of Light
© ACS


Accelerated Discovery of α-Cyanodiarylethene Photoswitches
N. F. König, D. Mutruc, and S. Hecht
Journal of the American Chemical Society 143 24 (2021) 9162,
DOI: 10.1021/jacs.1c03631F 

 

Lichtblick für die Quantenforschung
HU-Forschungsteam und Partner haben erstmals die Teilchenaustauschphase von Photonen direkt gemessen

Dieses Experiment liefert den direkten Beleg für ein erstaunliches Quantenphänomen, das nur bei völlig gleichartigen Quantenobjekten beobachtet wird. Damit kommt die Quantenforschung einen wichtigen Schritt voran.

Die Teilchen, denen das Forscherteam auf der Spur ist, sind schwer zu fassen. Die Physiker untersuchen die Quantenteilchen der elektromagnetischen Wellen, auch Photonen genannt, aus denen Licht besteht. Photonen lassen sich nur dann unterscheiden, wenn sie unterschiedliche Wellenlängen haben, in unterschiedlichen Richtungen schwingen oder sich an verschiedenen Punkten in Raum und Zeit befinden.

„Wenn zwei in Wellenlänge und Schwingungsrichtung ununterscheidbare Photonen aufeinandertreffen und sich wieder trennen, haben sie gewissermaßen ihre Identität verloren“, erläutert Kurt Busch. „Man stelle sich vor, wir schicken zwei Zwillinge durch zwei Türen in einen gemeinsamen Raum. Wenn Sie wieder hinaustreten, können wir nicht feststellen, ob sie dazu jeweils dieselbe Tür benutzt haben oder nicht“, ergänzt Oliver Benson, Mitglied von IRIS Adlershof. In der Quantenmechanik passiert dennoch etwas. Laut dem sogenannten Symmetrisierungspostulat gibt es zwei Kategorien von Elementarteilchen: Bosonen und Fermionen. Diese Arten von Teilchen unterscheiden sich dahingehend, was passiert, wenn man sie miteinander vertauscht.


 
Lichtblick

Abbildung 1: Konzeptionelle Skizze des Interferometeraufbaus: a Ein verschränktes Photonenpaar (roter Strahl) wird in das Interferometer geleitet, welches zwei unterschiedliche Möglichkeiten am zentralen polarisierenden Strahlteiler (PBS) produziert, wie in b gezeigt: Entweder das Photon in Pfad 1 wird transmittiert und das Photon in Pfad 2 wird reflektiert oder genau umgekehrt. Die Quantensuperposition dieser Szenarien führt zu der Interferenz zwischen Zuständen, die physikalisch vertauschte Versionen voneinander sind, und offenbart die Teilchenaustauschphase ϕ_x. Der blaue Strahl wird von einem abgeschwächten Laser erzeugt und dient als Referenzsignal um die effektiven optischen Pfadlängenunterschiede, ϕ_1 und ϕ_2, zu bestimmen.



Im Beispiel hieße das, wenn jeder der Zwillinge den Raum aus der jeweils anderen Tür wieder verlässt. Bei Bosonen ändert sich nichts – bei Fermionen erhält die quantenmechanische Wellenfunktion, die die Teilchen beschreibt, einen Phasenschub, der auch Austauschphase genannt wird. „Im Zwillingsbeispiel kann man sich das vielleicht so vorstellen: Schicken wir die beiden Zwillinge im Gleichschritt in den Raum und kommen sie aus verschiedenen Türen wieder heraus, so sind sie weiterhin im Gleichschritt. Als Bosonen treten die Zwillinge mit demselben Bein voran aus dem Raum heraus, mit dem sie auch zuerst in Raum geschritten sind. Jedoch benötigen sie als Fermionen beide einen Schritt mehr und gehen beim Verlassen des Raumes nun mit dem anderen Bein voran“, so Benson. „Dass Photonen bosonisch sind, konnte bislang nur durch indirekte Messungen und mathematische Berechnungen gezeigt werden“, sagt Kurt Busch. „In unserem jüngsten Experiment haben wir die Teilchenaustauschphase von Photonen erstmals direkt gemessen und haben damit einen direkten Beleg für ihren bosonischen Charakter erbracht.“

Um die Austauschsymmetrie eines Zustandes für zwei identische Teilchen direkt nachzuweisen, hat das Team eine optische Apparatur mit einem Interferometer aufgebaut. Herzstück des Aufbaus – in der Größe eines kleinen Tisches – sind zwei Strahlteiler. Zwei Photonen wurden dann in das Interferometer geschickt und durch den Strahlteiler auf zwei verschiedene Wege geführt. Entlang einem der beiden Wege werden die Photonen miteinander vertauscht, während sie auf dem anderen unverändert bleiben. Am Ausgang des Interferometers wurden dann beide Photonen am zweiten Strahlteiler wieder überlagert. „Je nachdem, ob die Photonen bosonisch oder fermionisch sind, sind dann die beiden Photonen im Gleichschritt und verstärken sich oder sie sind außer Tritt und löschen sich aus“, erläutern die Physiker.


Zukünftige Verbesserungen des Interferometers werden ein neues Werkzeug für Präzisionsmessungen mit Quantenlicht bereitstellen. Gleichzeitig etabliert das Experiment eine neue Methode zur Erzeugung und Zertifizierung von Quanten-Zuständen von Licht. Dies ist sehr wichtig im neuen Gebiet der Quanteninformationsverarbeitung, auf deren Basis derzeit neuartige, wesentlich leistungsfähigere Computer entwickelt werden.


Direct observation of the particle exchange phase of photons
K. Tschernig, C. Müller, M. Smoor, T. Kroh, J. Wolters, O. Benson, K. Busch, and A. Perez-Leija
Nat. Photonics (2021), DOI: 10.1038/s41566-021-00818-7

 

 
Real-time optical distance sensing of up-conversion nanoparticles with a precision of 2.8 nanometers
 
OLED

Calculated self-interference of a single nanoparticle
placed on a mirror substrate with a silica layer as the
spacer. (i), (ii) and (iii) show different cuts through the
far-field patterns of oriented dipoles oscillating along
the x,y and z-axis, respecitvely

Sub-diffraction limited localization of fluorescent emitters is a major goal of microscopy imaging. It is of key importance for so-called super-resolution, a technique that was awarded the Nobel Prize in Chemistry in 2014. A cooperation of researchers in Australia, China, the USA and IRIS Adlershof have now demonstrated ultra-precise localization and tracking of fluorescent nanoparticles dispersed on a mirror. The many randomly oriented molecular dipoles in such up-conversion nanoparticles (UCNPs) interfere with their own mirror images and create unique, bright and position-sensitive patterns in the spatial domain.

The pattern can be detected in the far-field by a sensitive camera and was compared to a detailed and quantitative numerical simulation. In this way it was possible to localize individual particles with an accuracy of only 2.8 nm, a value which is smaller than 1/350 of the excitation wavelength.

OLED

Simulated (topmost two rows) and experimental (bottommost two rows) far-field self-interference emission patterns.
The particle- to-mirror distance in- creases from the left to the right column from 72nm to 327nm. All scale bars are 500 nm.


The localization can be performed rapidly, and a single particle can be followed with a 50Hz frame rate. This is much faster than other self-interference-based methods based on mapping of the fluorescence spectrum. A special benefit of UCNPs is their high photo-stability and sensitivity, e.g. to temperature and PH. Therefore, the novel technique may be used for high-resolution multimodality single-particle tracking and sensing.

Axial Localization and Tracking of Self-interference Nanoparticles by Lateral Point Spread Functions
Y. Liu, Z. Zhou, F. Wang, G. Kewes, S. Wen, S. Burger, M. Ebrahimi Wakiani, P. Xi, J. Yang, X. Yang, O. Benson, and D. Jin
Nat. Commun. 12 (2021) 2019, DOI: 10.1038/s41467-021-22283-0

 

 Per Tintenstrahl gedruckte Elektroden in OLEDs

Forscher des HySPRINT-Verbundlabors GenFab (Generative Manufacturing Processes for Hybrid Components) der Humboldt-Universität zu Berlin (HU) und des Helmholtz-Zentrums Berlin (HZB) haben eine vom Berliner Unternehmen OrelTech hergestellte leitfähige Tinte erfolgreich in lösungsprozessierten organischen LEDs integriert.

OLED
Die OLEDs basierend auf der OrelTech Tinte leuchten
auch bei Verbiegen.

Nach dem Drucken der partikelfreien Silbertinte wird ein Argonplasma verwendet, um die Silberionen in der Tinte zu metallischem Silber zu reduzieren. „Da dieser Prozess bei niedriger Temperatur stattfindet, eignet er sich für temperaturempfindliche Substrate wie flexible Kunststofffolien“, erklärt Dr. Konstantin Livanov, Mitbegründer und Technischer Leiter von OrelTech. Die Forscher stellten organische Leuchtdioden unter Verwendung der Silbertinte als transparente leitende Elektrode auf dem flexiblen Substrat PET her. Die resultierenden Bauteile zeigen vergleichbare Lichtleistungseigenschaften wie diejenigen, die auf dem ansonsten weit verbreiteten Indiumzinnoxid (ITO) basieren. Entscheidend ist jedoch, dass die Silberelektroden beim mechanischen Biegen eine überlegene Stabilität gegenüber ITO zeigten. Dr. Felix Hermerschmidt, leitender Forscher im gemeinsamen Labor von HU und HZB, bestätigt: "Die auf der OrelTech-Tinte basierenden OLEDs bleiben noch bei solch einem Biegeradius intakt, bei dem die auf ITO basierenden OLEDs brüchig werden und versagen." Dies eröffnet verschiedene Anwendungsmöglichkeiten für die gedruckten Bauelemente. Die Arbeit wurde in der Fachzeitschrift "Flexible and Printed Electronics" veröffentlicht und ist Open Access verfügbar. GenFab, unter der Leitung des IRIS Adlershof Mitglieds Prof. List-Kratochvil, zieht für weitere Forschungs- und Entwicklungsarbeiten in Labore und Büros im neuen IRIS-Forschungsgebäude ein.

ITO-free OLEDs utilizing inkjet-printed and low temperature plasma-sintered Ag electrodes,
M. Hengge, K. Livanov, N. Zamoshchik, F. Hermerschmidt, and E..J. W. List-Kratochvil
Flex. Print. Electron. 6 (2021) 015009, DOI: 10.1088/2058-8585/abe604



WEITERE SCIENTIFIC HIGHLIGTHS

  
 

Optical coherence tomography (OCT) on highly scattering and porous materials

Xolography as new volumetric 3D printing method

Molecular telegraphy: Sending and receiving individual molecules precisely

Implementation of Flexible Embedded Nanowire Electrodes in Organic Light‐Emitting Diodes

Die Zukunft der Biomedizin?

Graphen als Detektiv zum Entschlüsseln molekularer Selbstorganisation

First quantum measurement of temperature in a living organism

Enwrapping of tubular J-aggregates of amphiphilic dyes for stabilization and further functionalization

Metal-Assisted and Solvent-Mediated Synthesis of Two-Dimensional Triazine Structures on Gram Scale

Reversible Switching of Charge Transfer at the Graphene-Mica Interface with Intercalating Molecules

Hidden Symmetries in Massive Quantum Field Theory

Understanding the interaction of polyelectrolyte architectures with proteins and biosystems

Printed perovskite LEDs – an innovative technique towards a new standard process of electronics manufacturing

Modulating the luminance of organic light-emitting diodes via optical stimulation of a photochromic molecular monolayer at transparent oxide electrode

Review on hybrid integrated quantum photonic circuit

Excited-state charge transfer enabling MoS2/Phthalocyanine photodetectors with extended spectral sensitivity

Insights into charge transfer at the atomically precise nanocluster/semiconductor interface for in-depth understanding the role of nanocluster in photocatalytic system

  2
0
2
0

 

 

Influence of interface hydration on sliding of graphene and Molybdenum-disulphide single-layers

Off-shell gauge invariance

Verschränkte Photonen für Messungen im mittleren Infrarot - Quantum Futur Award 2019 für Aron Vanselow

Direct measurement of quantum efficiency of single-photon emitters in hexagonal boron nitride

Artikel des IRIS-Nachwuchsgruppenleiters Michael J. Bojdys wird in Nature Communications veröffentlicht

Neuer Halbleiter aus der Familie der Kohlenstoffnitride

Researchers demonstrate very large electric tuning of a single quantum emitter at room temperature

Optische Displays in neuem Licht

Hybrid Organic-Inorganic Perovskites: Promising Substrates for Single-Atom Catalysts

Ab initio modeling of novel photocathode materials for high brightness electron beams

  2
0
1
9