AKTUELLES
23.05.2023The IOP–Humboldt Postdoctoral Fellowship in PhysicsNominations are open for postdoctoral fellowships between two cities, Berlin and Beijing, as part of a joint physics program between the Integrative Research Institute for the Sciences (IRIS Adlershof) of Humboldt-Universität zu Berlin (HU Berlin) and the Institute of Physics, Chinese Academy of Sciences, (IOP) Beijing. FELLOWSHIP PROGRAMEstablished in 2020, the prestigious two-year research fellowships are intended for exceptional early-career scientists, in preparation for an independent career in research at the frontier of condensed matter physics, quantum materials or device physics. Successful candidates will spend one year in Berlin and one in Beijing at the research groups of their choice, supported by up to 4,500 EUR/month. The selected fellows are expected to be appointed in 2023 and 2024. A first networking event is scheduled in Berlin. Fellows will work at the Campus Adlershof of HU Berlin and the IOP Zhongguancun Beijing Campus. The fellows have the possibility to visit and interact with associated Partners at the Max Born Institute, the Helmholtz-Zentrum Berlin and its Electron Storage Ring BESSY II, the Leibniz-Institut für Kristallzüchtung or the Fritz-Haber Institute of the Max Planck Society.The prestigious two-year research fellowships are intended for exceptional early-career scientists, in preparation for an independent career in research at the frontier of condensed matter physics, quantum materials or device physics. Successful candidates will spend one year in Berlin and one in Beijing at the research groups of their choice, supported by up to 4,500 EUR/month. The selected fellows will be appointed from August 2022 onwards. A first networking event is programmed in Berlin. Fellows will work at the Campus Adlershof of HU Berlin and the IOP Zhongcuancun Beijing Campus. The fellows have the possibility to visit and interact with associated Partners at the Max Born Institute, the Helmholtz-Zentrum Berlin and its Electron Storage Ring BESSY II, the Freie Universität Berlin, at the Leibniz-Institut für Kristallzüchtung or the Fritz-Haber Institute of the Max Planck Society. A full list of participating groups can be found at HU Physics and the IOP website. Exemplary fields and participating groups includeCondensed Matter Theory Prof. Claudia Draxl, Prof. Sheng Meng, Prof. Hongming Weng, Prof. Chen Fang, Prof. Xinguo Ren, Prof. Jiangping Hu, Prof. Zhong Fang, Prof. Tao Xiang, Prof. Matthias Scheffler Ultrafast Laser Spectroscopy Photoemission Spectroscopy and Surface Science Optoelectronic Devices and Quantum Transport Scanning Probe Microscopy Quantum Information Electron Microscopy
Commitment to a one-year research stay at IOP followed by a further year at HU Berlin. Special travel preferences will be considered. A PhD degree in physics, chemistry, mathematics, or materials, obtained no more than five years prior to the application deadline. Previous international experience, such as conference talks and research abroad.
|
![]() |
Illustration: Defektzentren in Diamantnanostrukturen können als Quantenbits genutzt werden. Über Quantenoperationen kann die Quanteninformation in einzelnen Photonen gespeichert und in Glasfasern im zukünftigen Quanteninternet übertragen werden. |
Forschern der von Prof. Tim Schröder, Mitglied von IRIS Adlershof, geleiteten Arbeitsgruppe „Integrierte Quantenphotonik“ der Humboldt-Universität zu Berlin, ist es weltweit zum ersten Mal gelungen, Photonen mit stabilen Photonenfrequenzen, die von Quantenlichtquellen, oder, genauer gesagt, von Stickstoff-Fehlstellen-Defektzentren in Diamantnanostrukturen emittiert wurden, zu erzeugen und nachzuweisen. Dies wurde durch eine sorgfältige Wahl des Diamantmaterials, hochentwickelte Nanofabrikationsmethoden durchgeführt im Joint Lab Diamant Nanophotonik des Ferdinand-Braun-Instituts, Leibniz-Institut für Höchstfrequenztechnik und spezielle experimentelle Kontrollprotokolle ermöglicht. Durch die Kombination der Methoden kann das Rauschen der Elektronen, das bisher die Datenübertragung gestört hat, signifikant reduziert werden und die Photonen werden auf einer stabilen (Kommunikations-) Frequenz ausgesendet.
Zudem zeigen die Berliner Forscher, dass man perspektivisch mit Hilfe der entwickelten Methoden die gegenwärtigen Kommunikationsraten zwischen räumlich getrennten Quantensystemen mehr als 1000-fach erhöhen kann, so dass sie einem zukünftigen Quanteninternet einen wichtigen Schritt näher gekommen sind.
Einzelne Qubits wurden in optimierte Diamantnanostrukturen integriert. Diese Strukturen sind 1000-mal dünner als ein menschliches Haar und ermöglichen es, einzelne ausgesendete Lichtteilchen in Glasfasern gerichtet zu überführen. Bei der Herstellung der Nanostrukturen wird allerdings die Materialoberfläche auf atomarer Ebene beschädigt und freie Elektronen erzeugen unkontrollierbare Störungen für die erzeugten Lichtteilchen. Ein Rauschen, das vergleichbar ist mit einer unstabilen Radiofrequenz, führt zu Schwankungen in der Photonenfrequenz und verhindert somit erfolgreiche Quantenoperationen, wie beispielsweise Verschränkung.
Eine Besonderheit in dem genutzten Diamantmaterial ist, dass relativ viele Fremdatome (Stickstoff) in dem Kristallgitter vorhanden sind. Diese schirmen möglicherweise die Quantenlichtquelle von Störelektronen an der Oberfläche der Nanostruktur ab. „Die genauen physikalischen Prozesse müssen allerdings in Zukunft noch näher untersucht werden“, erklärt Laura Orphal-Kobin, Sprecherin des wissenschaftlichen Nachwuchses von IRIS Adlershof, die gemeinsam mit Tim Schröder an den Quantensystemen forscht.
Optically Coherent Nitrogen-Vacancy Defect Centers in Diamond Nanostructures
L. Orphal-Kobin, K. Unterguggenberger, T. Pregnolato, N. Kemf, M. Matalla, R.-S. Unger, I. Ostermay, G. Pieplow, und T. Schröder
Physical Review X (2023)
Kontakt:
Laura Orphal-Kobin, Telefon: +49 30 2093 82146, Email: orphalphysik.hu-berlin.de
Prof. Dr. Tim Schröder, Telefon: +49 30 2093 82140, Email: tim.schroederphysik-hu-berlin.de
Humboldt-Universität zu Berlin, Institut für Physik und IRIS Adlershof, Integrated Quantum Photonics Group & Joint Lab Diamond Nanophotonics, Ferdinand-Braun-Institut