Kontakt

IRIS Adlershof
Humboldt-Universität zu Berlin
Zum Großen Windkanal 2
12489 Berlin
Germany

Direktor
Prof. Dr. Jürgen P. Rabe
rabeiris-adlershof.de


Geschäftsstelle
officeiris-adlershof.de
Tel.: +49 30 2093-66350
Fax: +49 30 2093-13-66350

 

AKTUELLES

20.06.2024Dr. Gustav Mogull erhält den Karl-Scheel-Preis der Physikalischen-Gesellschaft zu Berlin 2024

Dr. Mogull & Visualisierung einer Streuung zweier schwarzer Löcher inklusive Wellenprofil

Dr. Gustav Mogull, Nachwuchswissenschaftler am Institut für Physik der Humboldt-Universität zu Berlin und assoziert mit dem Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), erhält den renommierten Karl-Scheel-Preis für seine bahnbrechenden Arbeiten auf dem Gebiet der Allgemeinen Relativitätstheorie und Gravitationswellenphysik.

Seit der ersten Beobachtung von Gravitationswellen im Jahr 2015 hat sich ein neues Forschungsfeld zur Untersuchung von Schwarzen Löchern, Neutronensternen und zur Überprüfung der Allgemeinen Relativitätstheorie in extremen Gravitationsfeldern entwickelt. Dr. Mogull hat mit der von ihm in der Arbeitsgruppe von IRIS Adlershof-Mitglied Prof. Dr. Jan Plefka entwickelten Weltlinien-Quantenfeldtheorie (WQFT) einen neuartigen theoretischen Rahmen geschaffen, um hochpräzise analytische Vorhersagen für die klassische Zweikörperproblematik in der Allgemeinen Relativitätstheorie zu berechnen.

Mit Hilfe der WQFT konnte Dr. Mogull in einer Reihe von Arbeiten, die in hochrangigen Journalen wie Physical Review Letters veröffentlicht wurden, wichtige physikalische Observablen für die Dynamik von Schwarzen Löchern und Neutronensternen herleiten. Seine Ergebnisse finden bereits Anwendung in der Modellierung von Gravitationswellensignalen für die Datenanalyse aktueller und zukünftig geplanter Gravitationswellendetektoren.

Der Preis würdigt Dr. Mogulls herausragende theoretische Arbeiten zur Zweikörperproblematik, die für künftige hochpräzise Tests der Allgemeinen Relativitätstheorie und unser Verständnis von Gravitationswellen von großer Bedeutung sind. Der entscheidende Fortschritt der WQFT liegt in der Übertragung von Methoden der Quantenfeldtheorie, die gewöhnlicherweise die Elementarteilchenphysik beschreibt, auf die Wechselwirkung von schwarzen Löchern. In diesem Sinne ersetzt man die theoretische Beschreibung der Streuung von Protonen in Teilchenbeschleunigern durch die Streuung von schwarzen Löchern in unserem Universum. Der mit 5.000 Euro dotierte Karl-Scheel-Preis wird jährlich von der Deutschen Physikalischen Gesellschaft für hervorragende Leistungen auf dem Gebiet der Physik verliehen.

Gustav Mogull hat an der University of Cambridge studiert und in Edinburgh mit Arbeiten zur Streuamplituden in der Quantenfeldtheorie promoviert. Nach einem Postdoc-Aufenthalt in Uppsala (Schweden) ist er seit 2020 Long-Term Postdoc am DFG Graduiertenkolleg „Rethinking Quantum Field Theory“ (Sprecher: Prof. Dr. J. Plefka), das kürzlich für eine zweite Förderphase verlängert wurde.  Die nun ausgezeichneten Arbeiten sind im Rahmen dieses Forschungsprojekts entstanden, Herr Mogull ist hier auch aktiv an der Kobetreuung von Promotionen und Masterarbeiten im Kolleg beteiligt. Er hat kürzlich ein Fellowship der Royal Society erhalten, das ihn zu einer Lectureship an der Queen Mary University London ab Herbst 2024 führen wird.

Kontakt: Dr. Mogul und Prof. Dr. Plefka, Institut für Physik, GRK 2575.

19.06.2024Durchbruch in der Gravitationswellenphysik:
Streuung Schwarzer Löcher mit beispielloser Präzision

Jan Plefka, Mitglied von IRIS Adlershof


 
Visualisierung der gravitativen Bremsstrahlung aus der Streuung zweier schwarzer Löcher inklusive Wellenprofil
 


 
Visualisierung der gravitativen Bremsstrahlung aus der Streuung zweier schwarzer Löcher (BSc-Arbeit O. Babayemi)
 


 

Unter der Leitung von IRIS Adlershof-Mitglied Jan Plefka hat ein internationales Team die Dynamik zweier aufeinander­treffender Schwarzer Löcher mit der bisher höchsten jemals erreichten Präzision berechnet. Ihre in der renommierten Zeit­schrift Physical Review Letters als "Editor's Choice" veröffentlichte Arbeit liefert neue Einblicke in die enormen Gravitations­wechsel­wirkungen zwischen diesen extremen Objekten in unserem Universum.

Die Streuung Schwarzer Löcher ist ein fundamentales Problem der Allgemeinen Relativitäts­theorie Einsteins mit weitreichenden Folgen für die Astrophysik und Gravitations­wellen­astronomie. Das Verständnis der Gravitations­wechsel­wirkungen und der abgestrahlten Gravitations­strahlung bei der Kollision zweier Schwarze Löcher oder Neutronen­sterne ist entscheidend für die Inter­pretation von Beobachtungen mit Gravitations­wellen­detektoren wie LIGO und zukünftigen Detektoren der dritten Generation, die in den 2030er Jahren in Betrieb gehen sollen.

Die neuen Berechnungen der Forscher von der Humboldt-Universität zu Berlin, dem Max-Planck-Institut für Gravitations­physik und dem CERN bringen die theoretische Beschreibung der Schwarzen-Loch-Streuung auf eine noch nie dagewesene Genauigkeit - die fünfte Post-Minkowski‘sche Ordnung und nächstführende Selbst­kraftordnung. Diese enorm anspruchsvolle Vier-Schleifen-Berechnung erforderte modernste Integrations­techniken und Hoch­leistungs­rechner.

"Die Lösung dieses Problems markiert eine neue Grenze für Mehrschleifen-Berechnungen und effektive Feldtheorie-Techniken", sagte der Gruppenleiter Jan Plefka. Co-Autor Benjamin Sauer kommentierte: "Wir mussten jeden Aspekt optimieren, von der Erzeugung des Integranden bis hin zur Entwicklung neuer Integrationsmethoden." Insgesamt mussten einige Millionen von 16 dimensionalen Integralen, die den Streuwinkel beschreiben, auf eine Basis von 470 Masterintegralen reduziert werden, die dann berechnet wurden.

Bemerkenswerterweise fanden die Forscher, dass der resultierende Streuwinkel auf diesem neuen Präzisions­niveau eine erstaunliche Einfachheit aufweist, ohne dass neue transzendente Funktionen jenseits von Poly­logarithmen des Gewichts drei in Erscheinung treten. Alle theoretischen Checks, sowohl interne als auch durch Über­ein­stimmung mit nicht-relativistischen Grenz­fällen waren erfolgreich. 

Mit diesem Durch­bruch haben die Forscher die Grundlage dafür gelegt, ihre Berechnungen in fort­schrittliche Gravitations­wellen­modelle für die nächste Generation von Gravitations­wellen­detektoren einzubinden. Die höhere Präzision wird extrem genaue Tests der Einstein‘schen Theorie und neue Einblicke in die Kern- und Gravitations­physik von Doppel­systemen rotierender Schwarzer Löcher ermöglichen.

"Unsere Ergebnisse bringen die Vorhersage von Gravitations­wellen, die von Begegnungen Schwarzer Löcher ausgehen, auf eine noch nie dagewesene Genauigkeit", sagte der Co-Autor Gustav Uhre Jakobsen. "Dies eröffnet brillante neue Möglichkeiten, fundamentale Physik aus künftigen Gravitations­wellen­beobachtungen zu extrahieren."

Die Forschungsarbeit wurde von der Deutschen Forschungs­gemeinschaft im Rahmen des GRK 2575 „Rethinking Quantum Field Theory“ und dem Europäischen Forschungsrat mittels des Advanced Grants „GraWFTy“ von Jan Plefka finanziert.

Artikel:
Conservative Black Hole Scattering at Fifth Post-Minkowskian and First Self-Force Order
Mathias Driesse, Gustav Uhre Jakobsen, Gustav Mogull, Jan Plefka, Benjamin Sauer, and Johann Usovitsch
Phys. Rev. Lett. 132, 241402 – Published 13 June 2024
DOI: 10.1103/PhysRevLett.132.241402


Kontakt:
Prof. Dr. Jan Plefka
Sprecher Graduiertenkolleg 2575 „Rethinking Quantum Field Theory“
ERC Advanced Grant „GraWFTy"
Humboldt-Universität zu Berlin, IRIS Adlershof &
Institut für Physik, Arbeitsgruppe Quantenfeld- und Stringtheorie
Zum Großen Windkanal 2, D-12489 Berlin

Postanschrift: Unter den Linden 6, 10099 Berlin

Email: jan.plefkahu-berlin.de
Tel:      +49 (0)30 2093 66409  
Sekr.:  +49 (0)30 2093 66413

qft.physik.hu-berlin.de
www2.hu-berlin.de/rtg2575/
X: @JanPlefka

19.06.2024Verbesserte Oberflächensensitivität für Raman-Signale durch aufbringbare poröse Goldmembran

In einer kürzlich erfolgten Zusammenarbeit der Emmy Noether-Forschungsgruppe „Physics of low-dimensional systems“ um IRIS Adlershof-Mitglied Dr. Sebastian Heeg an der HU Berlin haben Forscher des Leibniz-Instituts für Kristallzüchtung (IKZ), der Université Le Mans und der ETH Zürich mit der Entwicklung der oberflächensensitiven Raman-Streuung eine neue Methode der Raman-Spektroskopie realisiert. Dieser neue Ansatz behebt eine wesentliche Einschränkung der konventionellen Raman-Spektroskopie, bei der die Signale von Oberflächen oder dünnen Filmen oft schwach sind und durch dominante Signale der Grundsubstanz (Bulk) verdeckt werden.

Oberflächen spielen in Wissenschaft und Industrie eine zentrale Rolle, da hier die meisten Wechselwirkungen mit der Umwelt stattfinden, einschließlich chemischer Reaktionen, Adhäsion, Reibung und Interaktionen mit Licht. Die Oberflächeneigenschaften können sich in Bezug auf die chemische Zusammensetzung, die atomare Anordnung und die elektronische Struktur erheblich von den Eigenschaften der Grundsubstanz unterscheiden, was sich auf technologische Fortschritte wie Katalysatoren und Solarzellen auswirkt. Die Raman-Spektroskopie, ein leistungsfähiges, nicht-destruktives Verfahren zur Analyse von Molekülschwingungen, gibt Aufschluss über die chemische Zusammensetzung, Kristallinität, Defekte und Dehnung eines Materials. Sie ist besonders wertvoll für die Charakterisierung von Nanomaterialien, dünnen Filmen und biologischen Proben, bei denen präzise Oberflächeninformationen unerlässlich sind.

Die Anwendung der konventionellen Raman-Spektroskopie ist bei Oberflächen und dünnen Filmen durch dominante Bulk-Signale eingeschränkt. Das Aufbringen poröser Goldmembranen (PAuMs) ermöglicht jedoch die Untersuchung oberflächenspezifischer Raman-Signale mit noch nie dagewesener Klarheit. PAuMs enthalten unregelmäßige, schlitzförmige Nanoporen, die als plasmonische Antennen wirken. Wenn PAuM auf einer Oberfläche oder einem dünnen Film von Interesse platziert wird, verstärken die Nanoporen das Raman-Signal der direkt darunter liegenden Oberfläche, während die Membran selbst die Signale des Bulks unterdrückt. Die Kombination dieser Effekte verbessert das Verhältnis von Oberflächen- zu Bulksignalen um drei Größenordnungen und ermöglicht eine tatsächlich oberflächenempfindliche Raman-Streuung.

Die Forscher verwendeten Graphen als Modelloberfläche und beobachteten, dass die Nanoporen in den Membranen das Ramansignal von Graphen um das Hundertfache verstärken. Wenn man einen Abstandshalter zwischen Graphen und PAuM anbringt, zeigt sich, dass die Raman-Verstärkung auf die ersten 2-3 nm des Materials unter der Membran beschränkt ist, was eine echte Oberflächenempfindlichkeit zeigt. Eine erste prototypische Anwendung betrifft die Quantifizierung der Dehnung in einer 12,5 nm dünnen Si-Quantentopfschicht unter Verwendung von PAuMs. Die Schicht ist Teil einer Silizium-Germanium-Heterostruktur, die für die Verwendung von Spin-Qubits als vielversprechende und sich schnell entwickelnde Technologie für Quantencomputer entwickelt wurde.

In einem zweiten Anwendungsfall werden PAuMs zur Untersuchung der Oberfläche eines dünnen LaNiO3-Films, eines metallischen Perowskits, der als Elektrodenmaterial verwendet wird, eingesetzt. Die elektrische Leitfähigkeit von LaNiO3-Filmen ist stark an ihre kristallografische Struktur gekoppelt und kann durch die Filmdicke reguliert werden. Als PAum auf LaNiO3 aufgebracht wurde, beobachteten die Autoren eine Raman-Modenaufspaltung, die von der Filmoberfläche ausgeht und auf einen Unterschied in der Oberflächenstruktur im Vergleich zum Bulk hinweist. Dieses Ergebnis stimmt mit theoretischen Vorhersagen und Beobachtungen aus rastertunnelmikroskopischen Untersuchungen überein.

„Unsere Arbeit verbindet zwei verschiedene Forschungsfelder.“, sagt Dr. Heeg. „Konzeptionell erweitern wir das Gebiet der plasmonenverstärkten Raman-Spektroskopie, die fast ausschließlich zur Untersuchung und Erkennung von molekularen Verbindungen und Nanostrukturen eingesetzt wird, auf den Bereich der Festkörpermaterialien wie Silizium-Quantentöpfe, dünne komplexe Oxidfilme und entsprechende Oberflächen.“ Das Team erforscht nun das Potenzial der Methode mit Partnern in Berlin und internationalen Kollaborateuren.
Dr. Pietro Marabotti, Einstein International Postdoctoral Fellow in Heegs Gruppe und Mitautor der Studie, merkt an, dass „unser Ansatz nicht auf kristalline Oberflächen beschränkt ist, die wir als Vorzeigebeispiel nutzen, sondern auch zur Untersuchung von z.B. biologischen Oberflächen oder oberflächengebundenen chemischen Reaktionen verwendet werden kann.“ Forscher, die sich für die Methode interessieren, sind eingeladen, sich mit dem Team in Verbindung zu setzen.
 

Bulk-suppressed and surface-sensitive Raman scattering by transferable plasmonic membranes with irregular slot-shaped nanopores
Roman M. Wyss, Günther Kewes, Pietro Marabotti, Stefan M. Koepfli, Karl-Philipp Schlichting, Markus Parzefall, Eric Bonvin, Martin F. Sarott, Morgan Trassin, Maximilian Oezkent, Chen-Hsun Lu, Kevin-P. Gradwohl, Thomas Perrault, Lala Habibova, Giorgia Marcelli, Marcela Giraldo, Jan Vermant, Lukas Novotny, Martin Frimmer, Mads C. Weber, and Sebastian Heeg
Nat. Commun. 15, 5236 (2024).
DOI: 10.1038/s41467-024-49130-2 OPENACCESS

Beitrag zur Arbeit in den ETH News

Beitrag zur Arbeit von der Humboldt Innovation


Kontakt:
Dr. Sebastian Heeg
Humboldt-Universität zu Berlin
IRIS Adlershof & Institut für Physik
Tel.: 030 2093-82295
E-Mail: sebastian.heegphysik.hu-berlin.de
Website: https://www.physik.hu-berlin.de/en/pld

05.06.2024DFG verlängert den Sonderforschungsbereich FONDA

Der SFB „FONDA – Grundlagen von Workflows für die Analyse großer naturwissenschaftlicher Daten“ wurde von der Deutschen Forschungsgemeinschaft (DFG) um eine Förderperiode von vier Jahren verlängert. Sprecher des SFB ist IRIS Adlershof-Mitglied Prof. Dr. Ulf Leser vom Institut für Informatik der Humboldt-Universität zu Berlin.

Der SFB FONDA widmet sich der Erforschung von Methoden zur Steigerung der Produktivität bei der Entwicklung, Ausführung und Wartung von Datenanalyse-Workflows (DAWs) für große wissenschaftliche Datensätze. In der heutigen Forschung werden in allen wissenschaftlichen Disziplinen immer größere Datenmengen erzeugt. Diese müssen mit komplexen DAWs analysiert werden, die auf verteilten und parallelen Recheninfrastrukturen laufen. Traditionell sind diese Workflows auf Geschwindigkeit optimiert, was zu individuellen Lösungen führt, die schwer reproduzierbar und für andere Forschende schwer nutzbar sind.

Ziel von FONDA ist es, Methoden und Werkzeuge zu entwickeln, die die Entwicklungszeit und -kosten von DAWs erheblich reduzieren. Dies soll durch neue Abstraktionen, Modelle und Algorithmen erreicht werden, die die Grundlage für eine neue Generation von Workflow-Infrastrukturen bilden können. Der SFB untersucht unter anderem folgende Fragen: Wie können DAWs entwickelt werden, die auf verschiedenen Soft- und Hardware-Infrastrukturen gleichermaßen effizient laufen? Wie müssen diese Workflows gestaltet sein, damit sie sich an veränderte Eingabedaten oder Anforderungen anpassen können? Und wie können zuverlässige Datenanalysesysteme gebaut werden, die ihre eigenen Voraussetzungen erkennen und kontrollieren, um die Zuverlässigkeit ihrer Ausführung zu steigern?

22.05.2024Joachim Sauer erhält Blaise-Pascal-Medaille 2024 in Chemie

Für seine wegweisenden Forschungsleistungen im Bereich katalytischer Reaktionen auf der Grundlage der Quantenchemie wurde dem renommierten Chemiker und IRIS Adlershof-Gründungsmitglied Prof. Joachim Sauer von der European Academy of Sciences (EURASC) die Blaise-Pascal-Medaille 2024 in Chemie verliehen. Die EURASC würdigt damit seine innovativen Forschungsmethoden wie hybride Quantenmechanik-Berechnungen und Grand-Canonical-Monte-Carlo-Simulationen, die das Verständnis der heterogenen Katalyse auf ein neues Niveau gehoben haben. Mit der Verleihung der Medaille, die nach dem französischen Mathematiker, Physiker und Philosophen Blaise Pascal benannt ist, wird Prof. Sauer in eine Liste von Personen aufgenommen, die sich durch herausragende Beiträge zu Wissenschaft, Technologie und Forschungsausbildung auszeichnen. Die Preisverleihung findet am 29. und 30. Oktober 2024 in der Academia das Ciências de Lisboa in Lissabon statt.

Wir gratulieren unserem Gründungsmitglied herzlich zu dieser Auszeichnung.