SCIENTIFIC HIGHLIGHTS

Verschränkte Photonen für Messungen im mittleren Infrarot - Quantum Futur Award 2019 für Aron Vanselow

Aron Vanselow erhält den zweiten Preis des Quantum Futur Award 2019, gesponsort durch das Bundesministerium für Bildung und Forschung (BMBF) für seine Masterarbeit an der Humboldt-Universität zu Berlin.
Es wurde lange erwartet, dass verschränkte Photonen das Potential für einen Paradigmen-Wechsel in Bildgebungs- und Mess-Anwendungen haben. Durch geringe Effizienz, Dekohärenz und Verluste hinken jedoch praktische Anwendungen bisher klassischen Umsetzungen hinterher.
Aron Vanselows Arbeit, durchgeführt
in der von Dr. Sven Ramelow, Mitglied von IRIS Adlershof geleiteten Nachwuchsgruppe “Nichtlineare Quantenoptik”, repräsentiert die erste experimentelle Demonstration von Frequency-domain optical coherence tomography (OCT) im mittleren Infrarot mit verschränkten Photonen. OCT ist eine wichtiges Verfahren zur Tiefen-Abbildung in der biomedizinischen Diagnostik, sowie als Methode für zerstörungsfreie Messungen und erlaubt 3D Mikroskopie. Speziell im mittleren Infrarot erlaubt OCT Abbildungen in stark streuenden Materialen zu realisieren, für die kommerzielle Systeme nicht geeignet sind. Der proof-of-principle Aufbau, den Aron Vanselow, Sven Ramelow und ihre Kollegen entwickelt haben, nutzt quanten-verschränkte Photonen aus einem patentierten, neuen Kristall. Beachtenswerterweise, ist die erzielte Sensitivität bereits vergleichbar mit den besten konventionellen Ansätzen, während die untersuchten Proben einer um 8 Größenordnungen geringeren optischen Leistung ausgesetzt sind. Gleichzeitig ist der technologische Aufwand drastisch reduziert im Vergleich zu klassisch-optischen Ansätzen.
In der Arbeit wird schnelle 2D und 3D Bildgebung von stark streuenden Proben (Keramiken, Farbschichten) mit 20 μm lateraler und 10 μm Tiefenauflösung demonstriert. Dies hat direkte Relevanz für Anwendungen in zerstörungsfreier Analyse, wie Qualitätskontrolle von Beschichtungsdicken, Kunstgeschichte und –erhaltung, sowie in der Mikrofluidik.


Mid-infrared Frequency-domain Optical Coherence Tomography with Undetected Photons

A. Vanselow, P. Kaufmann, I. Zorin, B. Heise, H. Chrzanowski, and S. Ramelow
Quantum Information & Measurement V, T5A.86


Ultra-broadband SPDC for spectrally far separated photon pairs

A. Vanselow, P. Kaufmann, H. M. Chrzanowski, and S. Ramelow
Optics Letters 44 (2019), 4638



Direct measurement of quantum efficiency of single-photon emitters in hexagonal boron nitride

Two-dimensional materials like boron nitride (h-BN) have recently attracted the attention of the quantum optics and nano optics community. Individual single photon emitting (SPE) defects can be found even in single layers of h-BN. These emitters are bright and stable and have a narrow emission line, making them potentially suitable for use in quantum communication devices. As the field is still young, it is difficult to create SPEs with desired properties. One reason for this is the yet unknown atomic origin of the defect, which could help to identify processing steps that could lead to the desired outcome. In order to determine the atomic origin of an emitter, calculations are carried out under the assumption of different atomic configurations and compared with the observed spectra. Unfortunately, the h-BN SPEs spectra are distributed over a wide range, which makes the application of this method difficult. Another intrinsic property is the quantum efficiency (QE), i.e. the branching ratio between a radiative rate and the total (radiative and non-radiative) decay rate.



Schematics of the performed experiment and a distance dependent lifetime measurement.
(a) The AFM is equipped with a gold-coated hemispherical tip aligned with an SPE in h-BN and held at a variable distance. The objective lens on the bottom of the glass excites the SPE (green pulsed laser) and collects its emission. With this setup, distance-dependent lifetime measurements can be performed, one such measurement is shown in (b) (points). To determine the QE, an adjustment was performed (blue solid line). The same fit function with a QE of 1.0 is represented by the green solid line as a reference.


Researchers of Nanooptik AG of Humboldt-University of Berlin in cooperation with the Technical University of Sydney could now directly measure the absolute QE of single defects in h-BN. The underlying principle is based on the proportionality between a controlled change in the local density of the states into which the emitter can emit and the lifetime of the excited state. The researchers implemented this experimentally by controlling the distance between the SPE and a mirror with nanometer accuracy while measuring the lifetime of the excited state. In this way, not only the high QE of up to 87(7) % was determined, but also a correlation between fluorescence wavelength and QE was found. This paves the way for a better understanding of the origin of the emitters.

Direct measurement of quantum efficiency of single-photon emitters in hexagonal boron nitride

N. Nikolay, N. Mendelson, E. Özelci, B. Sontheimer, F. Böhm, G. Kewes, M. Toth, I. Aharonovich, and O. Benson
Optica 6 (2019) 1084

Artikel des IRIS-Nachwuchsgruppenleiters Michael J. Bojdys wird in Nature Communications veröffentlicht

Der IRIS Nachwuchsgruppenleiter Michael J. Bojdys und sein internationales Team können einen großen Erfolg verbuchen: Ihr Artikel "Real-time optical and electronic sensing with a β-amino enone linked, triazine-containing 2D covalent organic framework" wurde für die Veröffentlichung in der renommierten Fachzeitschrift Nature Communications ausgewählt.
Bojdys Artikel beschäftigt sich mit „aromatischen 2-dimensionalen, kovalenten organischen Netzwerken“ (2D COFs), einer neuen Klasse poröser organischer Materialien, welche die präzise Eingliederung organischer Einheiten in periodische Strukturen ermöglichen. COFs können chemisch so gestaltet werden, dass sie bestimmte Oberflächenfunktionsgruppen beinhalten, die zur Regulierung optischer und elektronischer Eigenschaften genutzt werden können. Die geringe Stabilität der COFs gegenüber chemischen Triggern hat die praktische Anwendung bisher jedoch unmöglich gemacht.
Zusammen mit einem Te
am vom Institute of Organic Chemistry and Biochemistry of the CAS (Prag, Tschechische Republik) haben Bojdys und sein Team von der Humboldt-Universität zu Berlin ein neues Gestaltungsprinzip für COFs erforscht, das auf eine starke, ganzheitliche Konjugation und Einbindung von Donor-Akzeptor-Domänen setzt. In dieser Studie wurde ein neuer, hochstabiler, chemoresistenter β-Aminoenon-gebundener, triazinhaltiger COF als optischer und elektronischer Echtzeit-Sensor für flüchtige Säuren und Basen verwendet. Das Team konnte feststellen, dass die Sensing-Fähigkeit des COF durch Protonierung des Elektronenakzeptors - eines Triazinrings – gezeigt werden kann: Es kam zu einer Erhöhung der elektrischen Leitfähigkeit um zwei Größenordnungen und einer mit bloßen Augen sichtbaren optischen Reaktion. Diese Ergebnisse sind ein vielversprechender Ansatz für die Entwicklung praktischerer Sensoren und Schalter.

IRIS Adlershof gratuliert Michael J. Bojdys und seinem Team zu dieser erfolgreichen Studie und ihrer Ver­öff­ent­lich­ung in der Zeit­schrift Nature Com­mu­ni­ca­tions!


Aufgrund seiner großen Begeisterung für das Konzept von IRIS Adlershof und die hier durchgeführte Forschung kam der ERC-Stipendiat Bojdys 2018 an die Humboldt-Universität zu Berlin und zu IRIS Adlershof. Er leitet die Nachwuchsgruppe "Funktionale Materialien", ihr Forschungsfokus ist die Entwicklung metallfreier, elektronischer Komponenten für Transistoren und Sensoren auf der Basis funktionaler Materialien aus leichten, kovalent gebundenen Atomen. Im Mittelpunkt des Projekts steht die Herausforderung, die von der molekularen, organischen Chemie bekannten Kontrollmechanismen und Modularität auf makroskopische Strukturen zu übertragen.

Real-time optical and and electronic sensing with a β-amino enone linked, triazine-containing 2D covalent organic framework

R. Kulkarni, Y. Noda, D.K Barange, Y.S. Kochergin, P. Lyu, B. Balcarov, P. Nachtigall, and M.J. Bojdys
Nat. Commun 10 (2019) 3228


Die Pressemitteilung der Humboldt-Universität zu Berlin finden Sie hier.

Neuer Halbleiter aus der Familie der Kohlenstoffnitride

Teams der Humboldt-Universität und des Helmholtz-Zentrum für Materialien und Energie Berlin haben ein neues Material aus der Familie der Kohlenstoffnitride untersucht. Das Triazin-basierte graphitische Kohlenstoffnitrid (TGCN) ist ein Halbleiter, der sich gut für Anwendungen in der Optoelektronik eignen sollte. Die Struktur ist zweidimensional und erinnert an Graphen. Anders als beim Graphen ist die Leitfähigkeit jedoch senkrecht zu den Ebenen 65mal höher als in den Ebenen selbst.

Manche organische Materialien könnten ähnlich wie Siliziumhalbleiter in der Optoelektronik eingesetzt werden. Ob als Solarzellen, Leuchtdioden oder auch als Transistoren – wichtig ist dabei die so genannte Bandlücke, also der Energieunterschied zwischen Elektronen im Valenzband (gebundener Zustand) und dem Leitungsband (beweglicher Zustand). Durch Licht oder eine elektrische Spannung lassen sich Ladungsträger vom Valenzband ins Leitungsband heben – so funktionieren im Prinzip alle elektronischen Bauelemente. Ideal sind Bandlücken zwischen 1-2 Elektronenvolt.

Ein Team um den Chemiker Dr. Michael J. Bojdys vom IRIS Adlershof und dem Institut für Chemie der Humboldt-Universität zu Berlin hat kürzlich ein neues organisches Halbleitermaterial aus der Familie der Kohlenstoffnitride synthetisiert. Das Triazin-basierte graphitische Kohlenstoffnitrid oder TGCN besteht nur aus Kohlenstoff- und Stickstoff-Atomen und lässt sich als brauner Film auf einem Quarzsubstrat aufwachsen. Die C- und N-Atome bilden miteinander sechseckige Waben, ähnlich wie im Graphen, das aus reinem Kohlenstoff besteht. Wie bei Graphen ist auch beim TGCN die kristalline Struktur zweidimensional. Bei Graphen ist die Leitfähigkeit in der Ebene jedoch exzellent, senkrecht dazu deutlich schlechter. Bei TGCN ist es genau umgekehrt: die Leitfähigkeit senkrecht zur Ebene ist rund 65mal höher ist als in der Ebene selbst. Mit einer Bandlücke von 1,7 Elektronenvolt ist TGCN ein guter Kandidat für Anwendungen in der Optoelektronik.

Der Physiker Dr. Christoph Merschjann vom Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB) hat daraufhin im Laserlabor JULiq, einem Joint Lab zwischen HZB und Freier Universität Berlin, die Transporteigenschaften in Proben aus TGCN mit zeitaufgelösten Absorptionsmessungen im Femto- bis Nanosekundenbereich untersucht. Solche Laserexperimente stellen eine der wenigen Möglichkeiten dar, makroskopische Leitfähigkeiten mit mikroskopischen Transportmodellen zu verknüpfen. Aus den Messdaten konnte er ableiten, wie die Ladungsträger durch das Material diffundieren. „Sie verlassen die sechseckigen Waben aus Triazin-Einheiten nicht horizontal, sondern bewegen sich schräg zur nächsten Triazin-Einheit in der Nachbarebene. Dabei führt die Kristallstruktur zu einer bevorzugten Bewegung entlang röhrenartiger Kanäle.“ Dieser Mechanismus könnte erklären, dass die Leitfähigkeit senkrecht zu den Ebenen deutlich höher ist, als in den Ebenen.  „TGCN ist daher bislang der beste Kandidat, um gängige anorganische Halbleiter wie Silizium mit ihren teilweise kritischen “Dotanden” aus seltenen Elementen zu ersetzen“, sagt Michael Bojdys. „Unser Herstellungsverfahren, das wir in meiner Gruppe an der Humboldt-Universität entwickelt haben, führt zu flachen Schichten von halbleitendem TGCN auf isolierendem Quartzglas. Das ermöglicht Upscaling und einfache Device-Produktion."

Directional charge transport in layered, two‐dimensional triazine‐based graphitic carbon nitride
Y. Noda, C. Merschjann, J. Tarábek, P. Amsalem, N. Koch, and M.J. Bojdys
Angew. Chem. Int. Ed. 58 (2019) 9394


 

Researchers demonstrate very large electric tuning of a single quantum emitter at room temperature

Bright and tunable solid-state single-photon emitters (SPEs) are required for the realization of scalable quantum photonic technologies. Recently, optically active defects in a two-dimensional material, boron nitride (h-BN), have been extensively studied as bright single-photon emitters with a narrow linewidth and operating at room temperature. The layered nature of h-BN also offers potential advantages for integration in novel opto-electronic hybrid elements including photonic resonators, waveguides, modulator, and detectors. In order to exploit the functionality of such elements a tuning of the emitter’s fluorescence line is essential. Tuning via the Stark effect using a static electric field has been suggested for various solid-state emitters, such as quantum dots or color centers in diamond. Researcher from the Institute of Physics of Humboldt-University together with coworkers from the University of Technology in Sydney were now able to demonstrate controlled and reversible Stark tuning of individual emitters in hBN. They used a metallic tip of an atomic force microscope (AFM) to locally select a single emitter and tune it over a record range of up to 5.5 nanometers at room temperature.


a) Structure of a defect in hexagonal Boron Nitride. b) Schematic of the experiment, where a metallic AFM tip is placed above a single defect emitter and a bias voltage is applied. C) Measured Stark-shift of the narrow fluorescence line.

Based on their results the researchers suggest building a room-temperature single photon source, which can be tuned electrically in or out of a resonance of a plasmonic resonator. “Such a source would be highly desirable as a reliable non-classical light source for applications in quantum-enhanced sensing and metrology or in quantum key distribution.” says Prof. Oliver Benson, who is researcher in IRIS Adlershof and leads the Humboldt-team.
 
Very large and Reversible Stark-Shift Tuning of Single Emitters in Layered Hexagonal Boron Nitride
N. Nikolay, N. Mendelson, N. Sadzak, F. Böhm, T. T. Tran, B. Sontheimer, I. Aharonovich, and O. Benson
Phys. Rev. Applied 11 (2019) 041001
 

 

Optische Displays in neuem Licht

Wissenschaftler des Instituts für Chemie und des IRIS Adlershof der Humboldt-Universität zu Berlin haben in Zusammenarbeit mit Forschern der Universität Strasbourg und dem University College London erstmals lichtemittierende organische Transistoren realisiert, die durch Lichtpulse ferngesteuert werden können. Die Ergebnisse ihres konzeptionell neuartigen Ansatzes, der lumineszierende Polymere mit photoschaltbaren Molekülen kombiniert, wurden jetzt in Nature Nanotechnology veröffentlicht. Organische lichtemittierende Transistoren, eine Art Symbiose aus organischem Transistor (OTFT) und organischer Leuchtdiode (OLED), sind Schlüsselkomponenten für verschiedene optoelektronische Anwendungen im Displaybereich. Die Integration mehrerer verschiedener Funktionalitäten in ein und dasselbe Bauteil stellt eine große Herausforderung dar und die nächste Generation von hochauflösenden Bildschirmen erfordert darüber hinaus eine Verdichtung visueller Information in einzelne und ultrakleine Punkte. Ein interdisziplinärer Verbund von Chemikern und Physikern in Berlin, Strasbourg und London hat nun einen großen Schritt vorwärts unternommen und erstmals einen lichtemittierenden organischen Transistor entwickelt, der durch Licht kontrolliert werden kann. Dazu haben sie ein speziell maßgeschneidertes Molekül als kleinstmöglichen optischen Schalter mit einem lumineszierenden Polymer kombiniert. Im so hergestellten Bauelement ändert der molekulare Schalter unter Einwirkung von ultraviolettem und sichtbarem Licht reversibel seine elektronischen Eigenschaften und das Leuchten wird somit gesteuert. Da es für Displayanwendungen nicht ausreicht, lediglich eine Farbe abzustrahlen, haben die Forscher die Schaltermoleküle und Polymere variiert und so auf einander abgestimmt, dass die entsprechenden Transistoren in allen drei Primärfarben, das heißt rot, grün und blau, leuchten und somit das gesamte Farbspektrum abdecken können. Das enorme Anwendungspotenzial des Ansatzes konnte eindrucksvoll demonstriert werden, indem beliebige Muster, wie beispielsweise Buchstaben, mit einem Laser wiederholt geschrieben und gelöscht wurden und zwar mit extrem hoher Geschwindigkeit und räumlicher Auflösung von wenigen Mikrosekunden und Mikrometern – jenseits der derzeitig besten Retina-Displays. Als Resultat ist es somit prinzipiell möglich, die schnellen und hochauflösenden „smarten“ Displays bequem anzusteuern und beliebig zu konfigurieren.

Optically switchable organic light-emitting transistors
L. Hou, X. Zhang, G.F. Cotella, G. Carnicella, M. Herder, B.M. Schmidt, M. Pätzel, S. Hecht, F. Cacialli, and P. Samorì
Nature Nanotechnology 14 (2019) 347


Hybrid Organic-Inorganic Perovskites: Promising Substrates for Single-Atom Catalysts

Mononuclear metal species are widespread in enzymes and homogeneous catalysts. When such isolated single metal atoms are placed on a solid surface, they can also play an important role in heterogeneous catalysis. In the past few years, great attention has been paid to single-atom catalysts, not only because they can exhibit superior catalytic performance, but also, because they offer a novel way of maximizing the efficiency of utilizing atoms, which is especially desirable in the use of scarce metal elements like platinum. However, single atoms cannot work in isolation but need to be dispersed on suitable substrates.
Qiang Fu and Claudia Draxl have recently demonstrated that hybrid organic-inorganic perovskites ˗ the emerging candidates in solar-cell applications ˗ are highly promising substrates for Pt single atom catalysts. Through systematic first-principles calculations, they found that single Pt atoms are stabilized on such substrates through a synergistic cooperation between covalent bond formation and charge transfer. The generated Pt sites possess excellent catalytic properties in CO oxidation and may be able to play a role in CO2 reduction. This work not only has promising consequences in single-atom catalysis but also sheds light on potential applications of hybrid perovskites as photocatalysts.
 
Hybrid Organic-Inorganic Perovskites as Promising Substrates for Pt Single-Atom Catalysts
Q. Fu and C. Draxl
Physical Review Letters 122 (2019) 046101


 

Ab initio modeling of novel photocathode materials for high brightness electron beams

The development of laser-driven photocathode radio-frequency electron injectors has become a significant enabling technology for free electron lasers and for the fourth generation of light sources. Such remarkable progress come with quest for novel materials that are able to operate in the visible region with optimized quantum efficiency and minimized intrinsic emittance. Multi-alkali antimonides have recently emerged as ideal materials for photocathode applications in spite of the little fundamental knowledge regarding their electronic and optical properties. A team composed of scientists from the HU Berlin and HZB carried out a systematic investigation of the electronic structure and excitations of CsK2Sb, an exemplary and promising multi-alkali antimonide, by means of first-principles many-body methods. The results of their study confirm that this material is an excellent candidate for photocathode applications and pioneers a new research line bridging solid-state theory, material science, and accelerator physics in view of an improved modelling and design of materials for the next-generation electron sources.

This work was published on The Journal of Physics: Condensed Matter (http://iopscience.iop.org/article/10.1088/1361-648X/aaedee) as an invited contribution to Prof. Caterina Cocchi, a member of IRIS Adlershof since 2017, to the special issue “Emerging leaders 2018” (http://iopscience.iop.org/journal/0953-8984/page/Emerging-leaders-2018).
 
First-principles many-body study of the electronic and optical properties of CsK2Sb, a semiconducting material for ultra-bright electron sources
C. Cocchi, S. Mistry, M. Schmeißer, J. Kühn, and T. Kamps
J. Phys.: Condens. Matter 31 (2019) 014002


 


WEITERE SCIENTIFIC HIGHLIGTHS