SCIENTIFIC HIGHLIGHTS

Perowskit-LED aus dem Drucker – auf dem Weg zu einem neuen Standard für die Elektronik
 

Grafische Darstellung des Druckprozesses für die Perowskit-LED.
© Claudia Rothkirch/HU Berlin

Einem Team von Forschern des HZB und der Humboldt-Universität zu Berlin ist es zum ersten Mal gelungen, Leuchtdioden (LEDs) aus einem hybriden Perowskit-Halbleitermaterial per Tintenstrahldruck herzustellen. Das Tor zu einer breiten Anwendung solcher Materialien in vielerlei elektronischen Bauelementen ist damit geöffnet. Der Durchbruch gelang den Wissenschaftlern mithilfe eines Tricks: dem „Impfen“ der Oberfläche mit bestimmen Kristallen.

Die Mikroelektronik ist geprägt durch verschiedene funktionelle Materialien, deren Eigenschaften sie für bestimmte Anwendungen auszeichnen. So werden Transistoren und Datenspeicher aus Silizium gefertigt, und auch die meisten photovoltaischen Zellen für die Stromgewinnung aus Sonnenlicht bestehen aus diesem Halbleitermaterial. Um Licht in optoelektronischen Elementen wie Leuchtdioden (LEDs) zu erzeugen, kommen hingegen Verbindungshalbleiter wie Galliumnitrid zum Einsatz. Je nach Materialklasse unterscheiden sich zudem die Herstellungsverfahren. 

Raus aus dem Zoo aus Materialien und Methoden

Ein Blick in das Helmholtz Innovation Lab HySPRINT.
Wesentliche Arbeiten zu den druckbaren Perovskit-LEDs fanden hier statt.
 © HZB/Phil Dera

Eine Vereinfachung versprechen hybride Perowskit-Materialien – halbleitende Kristalle, deren organische und anorganische Bestandteile in einer bestimmten Kristallstruktur angeordnet sind. „Je nach Zusammensetzung lassen sich daraus alle Arten von mikroelektronischen Bauelementen fertigen“, sagt Prof. Dr. Emil List-Kratochvil, Leiter einer gemeinsamen Forschergruppe von HZB und Humboldt-Universität. Hinzu kommt: Perowskit-Kristalle ermöglichen eine vergleichsweise simple Art der Verarbeitung. „Sie lassen sich aus einer flüssigen Lösung herstellen, damit kann man das gewünschte Bauteil Schicht für Schicht direkt aus dem Substrat heraus aufbauen“, erklärt der Physiker.

Nach Solarzellen nun auch Leuchtdioden aus dem Drucker

Dass sich Solarzellen aus einer Lösung solcher Halbleiterverbindungen heraus drucken lassen, haben die Wissenschaftler am HZB in den letzten Jahren bereits gezeigt – und sind
heute bei dieser Technologie weltweit führend. Nun gelang es dem gemeinsamen Team von HZB und HU Berlin erstmals, auch funktionsfähige Leuchtdioden auf diese Weise herzustellen. Dazu verwendete die Forschergruppe einen Metall-Halogenid-Perowskit: ein Material, das eine besonders hohe Effizienz bei der Lichterzeugung verspricht – das aber andererseits schwierig zu verarbeiten ist. „Bislang war es nicht möglich, solche Halbleiterschichten aus einer flüssigen Lösung mit ausreichender Qualität zu erzeugen“, sagt List-Kratochvil. So ließen sich LEDs nur aus organischen Halbleitern drucken, die aber nur eine bescheidene Leuchtkraft liefern. „Die Herausforderung war es, die salzartige Vorstufe, die wir mit dem Drucker auf das Substrat aufbrachten, mit einer Art Lockmittel dazu zu bewegen, rasch und gleichmäßig zu kristallisieren“, erklärt der Wissenschaftler. Das Team wählte dafür einen „Impfkristall“: ein beigefügtes Salz, das sich auf dem Substrat anheftet und wie ein Gerüst für das Wachstum der Perowskit-Struktur dient.


Deutlich bessere optische und elektronische Merkmale

So schufen die Forscher gedruckte LEDs mit einer weit höheren Leuchtkraft und deutlich besseren elektrischen Eigenschaften als sie bislang mit additiven Fertigungsverfahren erreichbar waren. Doch für Emil List-Kratochvil ist dieser Erfolg nur ein Zwischenschritt auf dem Weg zu einer künftigen Mikro- und Optoelektronik, die seiner Meinung nach ausschließlich auf hybriden Perowskit-Halbleitern basiert. „Die Vorteile, die eine universell einsetzbare Klasse von Materialien bietet, aus der sich beliebige Bauteile mit einem einzigen einfachen und kostengünstigen Verfahren fertigen lassen, sind bestechend“, meint der Wissenschaftler. In dem Berliner Labor von HZB und HU will er daher nach und nach alle relevanten elektronischen Bauelemente auf diese Weise herstellen. Emil List-Kratochvil ist Professor für Hybride Bauelemente an der Berliner Humboldt-Universität (HU) und Leiter eines 2018 gegründeten Joint Labs, das von der HU gemeinsam mit dem HZB betrieben wird. Darüber hinaus arbeitet im „Helmholtz Innovation Lab HySPRINT“ ein Team um List-Kratochvil und der HZB-Wissenschaftlerin Dr. Eva Unger an der Entwicklung von Beschichtungs- und Druckverfahren – im Fachjargon auch additive Fertigung genannt – für hybride Perowskite, das sind Kristalle mit Perowskit-Struktur, die sowohl anorganische als auch organische Bestandteile enthalten. 


Ralf Butscher

Finally, inkjet-printed metal halide perovskite LEDs – utilizing seed crystal templating of salty PEDOT:PSS
Felix Hermerschmidt, Florian Mathies, Vincent R. F. Schröder, Carolin Rehermann, Nicolas Zorn Morales, Eva L. Unger, Emil. J. W. List-Kratochvil.
Mater. Horiz. (2020) Advance Article

 

Modulating the luminance of organic light-emitting diodes via optical stimulation of a photochromic molecular monolayer at transparent oxide electrode
 

Flavie Davidson-Marquis
a) Luminance of an OLED fabricated
with a SAM-modified ITO electrode.
The luminescence doubles
once the DAE is switched from
closed to open.
b) Values for the ratio between
the current densities and
luminescence measured
at 5 V upon multiple irradiation
cycles. The Modulation of the OLED
luminescence is reversible

Organic self-assembled monolayers (SAMs) deposited on inorganic bottom electrodes are commonly used to tune charge carrier injection or blocking in hybrid inorganic/organic optoelectronic devices. Beside the enhancement of device performance, the fabrication of multifunctional devices in which the output can be modulated by multiple external stimuli remains a challenging target. The authors of this CRC 951 research highlight report the functionalization of an indium tin oxide (ITO) electrode with a SAM of a photochromic diarylethene derivative designed for optically control the electronic properties. Following the demonstration of dense SAM formation and its photochromic activity, as a proof-of- principle, an organic light-emitting diode (OLED) embedding the light-responsive SAM-covered electrode is fabricated and characterized. Optically addressing the two-terminal device by irradiation with ultraviolet light (315 nm) doubles the electroluminescence (100% gain), which can be reversed by irradiation with visible light (530 nm). This approach of “dynamic” energy tuning could be successfully exploited in the field of opto-communication technology, for example to fabricate opto-electronic logic circuits.

Modulating the luminance of organic light-emitting diodes via optical stimulation of a photochromic molecular monolayer at transparent oxide electrode

G. Ligorio, G. F. Cotella, A. Bonasera,
N. Zorn Morales, G. Carnicella, B. Kobin,
Q. Wang, N. Koch, S. Hecht,
E. J.W. List-Kratochvil, and F. Cacialli
Nanoscale 12, 5444 (2020)

Review on hybrid integrated quantum photonic circuits

Recent developments in chip-based photonic quantum circuits have radically impacted quantum information processing. However, it is challenging for monolithic photonic platforms to meet the stringent demands of most quantum applications. Hybrid platforms combining different photonic technologies and different materials in a single functional unit have great potential to overcome the limitations of monolithic photonic circuits. 

Several key functional elements integrated on single photonic chip

Researchers from the KTH Royal Institute of Technology, Stockholm, Sweden, the University of Muenster, Germany, the National Institute of Standards and Technology, Gaithersburg, USA, and IRIS Adlershof review the progress of hybrid quantum photonics integration. They discuss important design considerations, including optical connectivity and operation conditions, and outline the roadmap for realizing future advanced large-scale hybrid devices, beyond the solid-state platform, which hold great potential for quantum information applications.


Three examples of hybrid integration: (a) Dibenzoterrylene embedded in a rigid matrix of crystalline anthracene as molecule single-photon source on a silicon nitride waveguide [Lombardi, et al. ACS Photon. 5, 126–132 (2018)], (b) Nonlinear phase gate in a hybrid atomic-photonic system [Tiecke, et al., Nature 508, 241–244 (2014)], (c) Hybrid atomic cladding photonic waveguide demonstrating light–matter interaction at room temperature [Stern, et al., Nat. Commun. 4, 1548 (2013)].

Hybrid integrated quantum photonic circuits

A.W. Elshaari, W. Pernice, K. Srinivasan, O. Benson and V. Zwiller
Nat. Photonics (2020)

 

Excited-state charge transfer enabling MoS2/Phthalocyanine photodetectors with extended spectral sensitivity

The combination of inorganic monolayer (ML) transition-metal dichalcogenides (TMDCs) with organic semiconductors holds the promise to further improve opto-electronic device properties with added functionality. The authors of this CRC 951 research highlight investigate a hybrid inorganic/organic system (HIOS) consisting of metal-free phthalocyanine (H2Pc) as thin organic absorber layer and ML MoS2 as TMDC. Via a combination of photoemission (PES), photoluminescence (PL), and photocurrent action spectroscopy they demonstrate, that excited-state charge transfer from the H2Pc layer enhances the photo response of ML MoS2 without loss in sensitivity extended to spectral regions where the TMDC is transparent. This observation is explained by the staggered type II energy-level alignment at the hybrid interface facilitating efficient exciton dissociation and excited-state charge transfer with the holes residing in the H2Pc HOMO and the electrons in the MoS2 conduction band. In hybrid photodetectors, these transferred charges increase the concentration of carriers in MoS2 and with that its photoconductivity. The present demonstration of a highly efficient carrier generation in TMDC/organic hybrid structures paves the way for future nanoscale photodetectors with very wide spectral sensitivity.















(a) Schematic design of the hybrid H2Pc/MoS2 photodetecting device. The H2Pc layer thickness is dH2Pc = 3.0 nm b Photoresponse of the hybrid (blue) and the reference MoS2-only (red) device. The spectra were normalized at the spectral position where H2Pc does not absorb, i.e., between 2.5 and 2.55 eV. The difference between the spectra of the hybrid (Rhyb) and reference (Rref) devices ΔR = Rhyb – Rref (green).

Excited-State Charge Transfer Enabling MoS2/Phthalocyanine Photodetectors with Extended Spectral Sensitivity

N. Mutz, S. Park, T. Schultz, S. Sadofev, S, Dalgleish, L. Reissig, N. Koch, E. J. W. List-Kratochvil, and S. Blumstengel
J. Phys. Chem. C 124, 2837 (2020)

 

Insights into charge transfer at the atomically precise nanocluster/semiconductor interface for in-depth understanding the role of nanocluster in photocatalytic system

A TiO2/cluster composite of type II junction configuration for photocatalytic hydrogen evolution is built by deposition of atomically precise Ag44 nanocluster on TiO2. Besides photosensitizer, the cluster is found to serve as co-catalyst to improve the charge separation efficiency of the system, which is quite different from the well-known plasmonic nanoparticle (NP) enhanced systems. The hydrogen production rate by Ag44-TiO2 is ten times higher than that of the pure TiO2 and five times higher than that of the Ag NP-TiO2.



(a) Schematic illustration of the H2 production by Ag44-TiO2 under simulated sunlight; (b) Catalytic performance of TiO2 (black), Ag NP-TiO2 (yellow) and Ag44- TiO2 (red).

Insights into charge transfer at the atomically precise nanocluster/semiconductor interface for in‐depth understanding the role of nanocluster in photocatalytic system

Y. Wang, X-H. Liu, Q. Wang, M. Quick, A.S. Kovalenko, Q.-Y. Chen, N. Koch, and N. Pinna
Angew. Chem. Int. Ed. 2020

Off-shell gauge invariance

Flavie Davidson-Marquis
Master integrals for reduction of 4-point
functions

Dirk Kreimer (IRIS member), John Gracey (U. Liverpool and DFG Mercator Fellow in Kreimer’s group) and postdoc Henry Kissler could clarify the algebraic and combinatorical foundations of off-shell Slavnov Taylor identities, off-shell gauge invariance that is. The problem remained open in the litera- ture for many years and was now settled by modern algebra and confirmed computation- ally. Quantum chromodynamics served here as a concrete test case. Generalizations to other gauge theories are under study. Figure 1: Off-shell gauge invariance Using Hopf-algebraic structures as well and diagrammatic techniques for deter- mining the Slavnov-Taylor identities for QCD familiar from the study of graph complexes we construct relations for off-shell Green functions. The methods are sufficiently versatile to allow for applications even in the study of diffeomorphism invariance in quantum gravity in the future.

Self-consistency of off-shell Slavnov-Taylor identities in QCD
J. A. Gracey, H. Kißler, and D. Kreimer
Phys. Rev. D 100 (2019) 085001



WEITERE SCIENTIFIC HIGHLIGTHS